Module:Hct/HctSolver
跳到导航
跳到搜索
- --[[
- Copyright 2021 Google LLC
- Licensed under the Apache License, Version 2.0 (the "License");
- you may not use this file except in compliance with the License.
- You may obtain a copy of the License at
- http://www.apache.org/licenses/LICENSE-2.0
- Unless required by applicable law or agreed to in writing, software
- distributed under the License is distributed on an "AS IS" BASIS,
- WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- See the License for the specific language governing permissions and
- limitations under the License.
- ]]
- --[[
- This file has been modified. The original version is at
- https://github.com/material-foundation/material-color-utilities
- ]]
- local colorUtils = require('Module:Hct/ColorUtils');
- local mathUtils = require('Module:Hct/MathUtils');
- local Cam16 = require('Module:Hct/Cam16');
- --[[ A class that solves the HCT equation. ]]
- local HctSolver = {
- SCALED_DISCOUNT_FROM_LINRGB = {
- {0.001200833568784504, 0.002389694492170889, 0.0002795742885861124},
- {0.0005891086651375999, 0.0029785502573438758, 0.0003270666104008398},
- {0.00010146692491640572, 0.0005364214359186694, 0.0032979401770712076},
- };
- LINRGB_FROM_SCALED_DISCOUNT = {
- {1373.2198709594231, -1100.4251190754821, -7.278681089101213},
- {-271.815969077903, 559.6580465940733, -32.46047482791194},
- {1.9622899599665666, -57.173814538844006, 308.7233197812385},
- };
- Y_FROM_LINRGB = {0.2126, 0.7152, 0.0722};
- CRITICAL_PLANES = {
- 0.015176349177441876, 0.045529047532325624, 0.07588174588720938,
- 0.10623444424209313, 0.13658714259697685, 0.16693984095186062,
- 0.19729253930674434, 0.2276452376616281, 0.2579979360165119,
- 0.28835063437139563, 0.3188300904430532, 0.350925934958123,
- 0.3848314933096426, 0.42057480301049466, 0.458183274052838,
- 0.4976837250274023, 0.5391024159806381, 0.5824650784040898,
- 0.6277969426914107, 0.6751227633498623, 0.7244668422128921,
- 0.775853049866786, 0.829304845476233, 0.8848452951698498,
- 0.942497089126609, 1.0022825574869039, 1.0642236851973577,
- 1.1283421258858297, 1.1946592148522128, 1.2631959812511864,
- 1.3339731595349034, 1.407011200216447, 1.4823302800086415,
- 1.5599503113873272, 1.6398909516233677, 1.7221716113234105,
- 1.8068114625156377, 1.8938294463134073, 1.9832442801866852,
- 2.075074464868551, 2.1693382909216234, 2.2660538449872063,
- 2.36523901573795, 2.4669114995532007, 2.5710888059345764,
- 2.6777882626779785, 2.7870270208169257, 2.898822059350997,
- 3.0131901897720907, 3.1301480604002863, 3.2497121605402226,
- 3.3718988244681087, 3.4967242352587946, 3.624204428461639,
- 3.754355295633311, 3.887192587735158, 4.022731918402185,
- 4.160988767090289, 4.301978482107941, 4.445716283538092,
- 4.592217266055746, 4.741496401646282, 4.893568542229298,
- 5.048448422192488, 5.20615066083972, 5.3666897647573375,
- 5.5300801301023865, 5.696336044816294, 5.865471690767354,
- 6.037501145825082, 6.212438385869475, 6.390297286737924,
- 6.571091626112461, 6.7548350853498045, 6.941541251256611,
- 7.131223617812143, 7.323895587840543, 7.5195704746346665,
- 7.7182615035334345, 7.919981813454504, 8.124744458384042,
- 8.332562408825165, 8.543448553206703, 8.757415699253682,
- 8.974476575321063, 9.194643831691977, 9.417930041841839,
- 9.644347703669503, 9.873909240696694, 10.106627003236781,
- 10.342513269534024, 10.58158024687427, 10.8238400726681,
- 11.069304815507364, 11.317986476196008, 11.569896988756009,
- 11.825048221409341, 12.083451977536606, 12.345119996613247,
- 12.610063955123938, 12.878295467455942, 13.149826086772048,
- 13.42466730586372, 13.702830557985108, 13.984327217668513,
- 14.269168601521828, 14.55736596900856, 14.848930523210871,
- 15.143873411576273, 15.44220572664832, 15.743938506781891,
- 16.04908273684337, 16.35764934889634, 16.66964922287304,
- 16.985093187232053, 17.30399201960269, 17.62635644741625,
- 17.95219714852476, 18.281524751807332, 18.614349837764564,
- 18.95068293910138, 19.290534541298456, 19.633915083172692,
- 19.98083495742689, 20.331304511189067, 20.685334046541502,
- 21.042933821039977, 21.404114048223256, 21.76888489811322,
- 22.137256497705877, 22.50923893145328, 22.884842241736916,
- 23.264076429332462, 23.6469514538663, 24.033477234264016,
- 24.42366364919083, 24.817520537484558, 25.21505769858089,
- 25.61628489293138, 26.021211842414342, 26.429848230738664,
- 26.842203703840827, 27.258287870275353, 27.678110301598522,
- 28.10168053274597, 28.529008062403893, 28.96010235337422,
- 29.39497283293396, 29.83362889318845, 30.276079891419332,
- 30.722335150426627, 31.172403958865512, 31.62629557157785,
- 32.08401920991837, 32.54558406207592, 33.010999283389665,
- 33.4802739966603, 33.953417292456834, 34.430438229418264,
- 34.911345834551085, 35.39614910352207, 35.88485700094671,
- 36.37747846067349, 36.87402238606382, 37.37449765026789,
- 37.87891309649659, 38.38727753828926, 38.89959975977785,
- 39.41588851594697, 39.93615253289054, 40.460400508064545,
- 40.98864111053629, 41.520882981230194, 42.05713473317016,
- 42.597404951718396, 43.141702194811224, 43.6900349931913,
- 44.24241185063697, 44.798841244188324, 45.35933162437017,
- 45.92389141541209, 46.49252901546552, 47.065252796817916,
- 47.64207110610409, 48.22299226451468, 48.808024568002054,
- 49.3971762874833, 49.9904556690408, 50.587870934119984,
- 51.189430279724725, 51.79514187861014, 52.40501387947288,
- 53.0190544071392, 53.637271562750364, 54.259673423945976,
- 54.88626804504493, 55.517063457223934, 56.15206766869424,
- 56.79128866487574, 57.43473440856916, 58.08241284012621,
- 58.734331877617365, 59.39049941699807, 60.05092333227251,
- 60.715611475655585, 61.38457167773311, 62.057811747619894,
- 62.7353394731159, 63.417162620860914, 64.10328893648692,
- 64.79372614476921, 65.48848194977529, 66.18756403501224,
- 66.89098006357258, 67.59873767827808, 68.31084450182222,
- 69.02730813691093, 69.74813616640164, 70.47333615344107,
- 71.20291564160104, 71.93688215501312, 72.67524319850172,
- 73.41800625771542, 74.16517879925733, 74.9167682708136,
- 75.67278210128072, 76.43322770089146, 77.1981124613393,
- 77.96744375590167, 78.74122893956174, 79.51947534912904,
- 80.30219030335869, 81.08938110306934, 81.88105503125999,
- 82.67721935322541, 83.4778813166706, 84.28304815182372,
- 85.09272707154808, 85.90692527145302, 86.72564993000343,
- 87.54890820862819, 88.3767072518277, 89.2090541872801,
- 90.04595612594655, 90.88742016217518, 91.73345337380438,
- 92.58406282226491, 93.43925555268066, 94.29903859396902,
- 95.16341895893969, 96.03240364439274, 96.9059996312159,
- 97.78421388448044, 98.6670533535366, 99.55452497210776,
- };
- };
- --[[
- Sanitizes a small enough angle in radians.
- @param angle An angle in radians; must not deviate too much from 0.
- @return A coterminal angle between 0 and 2pi.
- ]]
- function HctSolver.sanitizeRadians(angle)
- return (angle + math.pi * 8) % (math.pi * 2);
- end
- --[[
- Delinearizes an RGB component, returning a floating-point number.
- @param rgbComponent 0.0 <= rgb_component <= 100.0, represents linear R/G/B channel
- @return 0.0 <= output <= 255.0, color channel converted to regular RGB space
- ]]
- function HctSolver.trueDelinearized(rgbComponent)
- local normalized = rgbComponent / 100.0;
- local delinearized = 0.0;
- if normalized <= 0.0031308 then
- delinearized = normalized * 12.92;
- else
- delinearized = 1.055 * math.pow(normalized, 1.0 / 2.4) - 0.055;
- end
- return delinearized * 255.0;
- end
- function HctSolver.chromaticAdaptation(component)
- local af = math.pow(math.abs(component), 0.42);
- return mathUtils.signum(component) * 400.0 * af / (af + 27.13);
- end
- --[[
- Returns the hue of a linear RGB color in CAM16.
- @param linrgb The linear RGB coordinates of a color.
- @return The hue of the color in CAM16, in radians.
- ]]
- function HctSolver.hueOf(linrgb)
- local scaledDiscount =
- mathUtils.matrixMultiply(linrgb, HctSolver.SCALED_DISCOUNT_FROM_LINRGB);
- local rA = HctSolver.chromaticAdaptation(scaledDiscount[1]);
- local gA = HctSolver.chromaticAdaptation(scaledDiscount[2]);
- local bA = HctSolver.chromaticAdaptation(scaledDiscount[3]);
- -- redness-greenness
- local a = (11.0 * rA + -12.0 * gA + bA) / 11.0;
- -- yellowness-blueness
- local b = (rA + gA - 2.0 * bA) / 9.0;
- return math.atan2(b, a);
- end
- function HctSolver.areInCyclicOrder(a, b, c)
- local deltaAB = HctSolver.sanitizeRadians(b - a);
- local deltaAC = HctSolver.sanitizeRadians(c - a);
- return deltaAB < deltaAC;
- end
- --[[
- Solves the lerp equation.
- @param source The starting number.
- @param mid The number in the middle.
- @param target The ending number.
- @return A number t such that lerp(source, target, t) = mid.
- ]]
- function HctSolver.intercept(source, mid, target)
- return (mid - source) / (target - source);
- end
- function HctSolver.lerpPoint(source, t, target)
- return {
- source[1] + (target[1] - source[1]) * t,
- source[2] + (target[2] - source[2]) * t,
- source[3] + (target[3] - source[3]) * t,
- };
- end
- --[[
- Intersects a segment with a plane.
- @param source The coordinates of point A.
- @param coordinate The R-, G-, or B-coordinate of the plane.
- @param target The coordinates of point B.
- @param axis The axis the plane is perpendicular with. (1: R, 2: G, 3: B)
- @return The intersection point of the segment AB with the plane
- R=coordinate, G=coordinate, or B=coordinate
- ]]
- function HctSolver.setCoordinate(source, coordinate, target, axis)
- local t = HctSolver.intercept(source[axis], coordinate, target[axis]);
- return HctSolver.lerpPoint(source, t, target);
- end
- function HctSolver.isBounded(x)
- return 0.0 <= x and x <= 100.0;
- end
- --[[
- Returns the nth possible vertex of the polygonal intersection.
- @param y The Y value of the plane.
- @param n The zero-based index of the point. 0 <= n <= 11.
- @return The nth possible vertex of the polygonal intersection of the y plane
- and the RGB cube, in linear RGB coordinates, if it exists. If this
- possible vertex lies outside of the cube, {-1.0, -1.0, -1.0} is returned.
- ]]
- function HctSolver.nthVertex(y, n)
- local kR = HctSolver.Y_FROM_LINRGB[1];
- local kG = HctSolver.Y_FROM_LINRGB[2];
- local kB = HctSolver.Y_FROM_LINRGB[3];
- local coordA = n % 4 <= 1 and 0.0 or 100.0;
- local coordB = n % 2 == 0 and 0.0 or 100.0;
- if n < 4 then
- local g = coordA;
- local b = coordB;
- local r = (y - g * kG - b * kB) / kR;
- if HctSolver.isBounded(r) then
- return {r, g, b};
- else
- return {-1.0, -1.0, -1.0};
- end
- elseif n < 8 then
- local b = coordA;
- local r = coordB;
- local g = (y - r * kR - b * kB) / kG;
- if HctSolver.isBounded(g) then
- return {r, g, b};
- else
- return {-1.0, -1.0, -1.0};
- end
- else
- local r = coordA;
- local g = coordB;
- local b = (y - r * kR - g * kG) / kB;
- if HctSolver.isBounded(b) then
- return {r, g, b};
- else
- return {-1.0, -1.0, -1.0};
- end
- end
- end
- --[[
- Finds the segment containing the desired color.
- @param y The Y value of the color.
- @param targetHue The hue of the color.
- @return Two sets of linear RGB coordinates, each corresponding to an endpoint
- of the segment containing the desired color.
- ]]
- function HctSolver.bisectToSegment(y, targetHue)
- local left = {-1.0, -1.0, -1.0};
- local right = left;
- local leftHue = 0.0;
- local rightHue = 0.0;
- local initialized = false;
- local uncut = true;
- for n = 0, 11 do
- local mid = HctSolver.nthVertex(y, n);
- if mid[1] >= 0 then
- local midHue = HctSolver.hueOf(mid);
- if initialized then
- if uncut or HctSolver.areInCyclicOrder(leftHue, midHue, rightHue) then
- uncut = false;
- if HctSolver.areInCyclicOrder(leftHue, targetHue, midHue) then
- right = mid;
- rightHue = midHue;
- else
- left = mid;
- leftHue = midHue;
- end
- end
- else
- left = mid;
- right = mid;
- leftHue = midHue;
- rightHue = midHue;
- initialized = true;
- end
- end
- end
- return left, right;
- end
- function HctSolver.midpoint(a, b)
- return {
- (a[1] + b[1]) / 2,
- (a[2] + b[2]) / 2,
- (a[3] + b[3]) / 2,
- };
- end
- function HctSolver.criticalPlaneBelow(x)
- return math.floor(x - 0.5);
- end
- function HctSolver.criticalPlaneAbove(x)
- return math.ceil(x - 0.5);
- end
- --[[
- Finds a color with the given Y and hue on the boundary of the
- cube.
- @param y The Y value of the color.
- @param targetHue The hue of the color.
- @return The desired color, in linear RGB coordinates.
- ]]
- function HctSolver.bisectToLimit(y, targetHue)
- local left, right = HctSolver.bisectToSegment(y, targetHue);
- local leftHue = HctSolver.hueOf(left);
- for axis = 1, 3 do
- if left[axis] ~= right[axis] then
- local lPlane = -1;
- local rPlane = 255;
- if left[axis] < right[axis] then
- lPlane = HctSolver.criticalPlaneBelow(
- HctSolver.trueDelinearized(left[axis]));
- rPlane = HctSolver.criticalPlaneAbove(
- HctSolver.trueDelinearized(right[axis]));
- else
- lPlane = HctSolver.criticalPlaneAbove(
- HctSolver.trueDelinearized(left[axis]));
- rPlane = HctSolver.criticalPlaneBelow(
- HctSolver.trueDelinearized(right[axis]));
- end
- for i = 1, 8 do
- if math.abs(rPlane - lPlane) <= 1 then
- break;
- end
- local mPlane = math.floor((lPlane + rPlane) / 2.0);
- local midPlaneCoordinate = HctSolver.CRITICAL_PLANES[mPlane + 1];
- local mid = HctSolver.setCoordinate(left, midPlaneCoordinate, right, axis);
- local midHue = HctSolver.hueOf(mid);
- if HctSolver.areInCyclicOrder(leftHue, targetHue, midHue) then
- right = mid;
- rPlane = mPlane;
- else
- left = mid;
- leftHue = midHue;
- lPlane = mPlane;
- end
- end
- end
- end
- return HctSolver.midpoint(left, right);
- end
- function HctSolver.inverseChromaticAdaptation(adapted)
- local adaptedAbs = math.abs(adapted);
- local base = math.max(0, 27.13 * adaptedAbs / (400.0 - adaptedAbs));
- return mathUtils.signum(adapted) * math.pow(base, 1.0 / 0.42);
- end
- --[[
- Finds a color with the given hue, chroma, and Y.
- @param hueRadians The desired hue in radians.
- @param chroma The desired chroma.
- @param y The desired Y.
- @return The desired color as a hexadecimal integer, if found; 0 otherwise.
- ]]
- function HctSolver.findResultByJ(hueRadians, chroma, y)
- -- Initial estimate of j.
- local j = math.sqrt(y) * 11.0;
- -- ===========================================================
- -- Operations inlined from Cam16 to avoid repeated calculation
- -- ===========================================================
- local viewingConditions = require('Module:Hct/ViewingConditions');
- local tInnerCoeff =
- 1 / math.pow(1.64 - math.pow(0.29, viewingConditions.n), 0.73);
- local eHue = 0.25 * (math.cos(hueRadians + 2.0) + 3.8);
- local p1 =
- eHue * (50000.0 / 13.0) * viewingConditions.nc * viewingConditions.ncb;
- local hSin = math.sin(hueRadians);
- local hCos = math.cos(hueRadians);
- for iterationRound = 1, 5 do
- -- ===========================================================
- -- Operations inlined from Cam16 to avoid repeated calculation
- -- ===========================================================
- local jNormalized = j / 100.0;
- local alpha =
- (chroma == 0.0 or j == 0.0) and 0.0 or chroma / math.sqrt(jNormalized);
- local t = math.pow(alpha * tInnerCoeff, 1.0 / 0.9);
- local ac = viewingConditions.aw *
- math.pow(jNormalized, 1.0 / viewingConditions.c / viewingConditions.z);
- local p2 = ac / viewingConditions.nbb;
- local gamma = 23.0 * (p2 + 0.305) * t /
- (23.0 * p1 + 11 * t * hCos + 108.0 * t * hSin);
- local a = gamma * hCos;
- local b = gamma * hSin;
- local rA = (460.0 * p2 + 451.0 * a + 288.0 * b) / 1403.0;
- local gA = (460.0 * p2 - 891.0 * a - 261.0 * b) / 1403.0;
- local bA = (460.0 * p2 - 220.0 * a - 6300.0 * b) / 1403.0;
- local rCScaled = HctSolver.inverseChromaticAdaptation(rA);
- local gCScaled = HctSolver.inverseChromaticAdaptation(gA);
- local bCScaled = HctSolver.inverseChromaticAdaptation(bA);
- local linrgb = mathUtils.matrixMultiply(
- {rCScaled, gCScaled, bCScaled},
- HctSolver.LINRGB_FROM_SCALED_DISCOUNT
- );
- -- ===========================================================
- -- Operations inlined from Cam16 to avoid repeated calculation
- -- ===========================================================
- if linrgb[1] < 0 or linrgb[2] < 0 or linrgb[3] < 0 then
- return 0;
- end
- local kR = HctSolver.Y_FROM_LINRGB[1];
- local kG = HctSolver.Y_FROM_LINRGB[2];
- local kB = HctSolver.Y_FROM_LINRGB[3];
- local fnj = kR * linrgb[1] + kG * linrgb[2] + kB * linrgb[3];
- if fnj <= 0 then
- return 0;
- end
- if iterationRound == 5 or math.abs(fnj - y) < 0.002 then
- if linrgb[1] > 100.01 or linrgb[2] > 100.01 or linrgb[3] > 100.01 then
- return 0;
- end
- return colorUtils.argbFromLinrgb(linrgb);
- end
- -- Iterates with Newton method,
- -- Using 2 * fn(j) / j as the approximation of fn'(j)
- j = j - (fnj - y) * j / (2 * fnj);
- end
- return 0;
- end
- --[[
- Finds an sRGB color with the given hue, chroma, and L*, if possible.
- @param hueDegrees The desired hue, in degrees.
- @param chroma The desired chroma.
- @param lstar The desired L*.
- @return A hexadecimal representing the sRGB color. The color has sufficiently
- close hue, chroma, and L* to the desired values, if possible; otherwise,
- the hue and L* will be sufficiently close, and chroma will be maximized.
- ]]
- function HctSolver.solveToInt(hueDegrees, chroma, lstar)
- if chroma < 0.0001 or lstar < 0.0001 or lstar > 99.9999 then
- return colorUtils.argbFromLstar(lstar);
- end
- hueDegrees = mathUtils.sanitizeDegreesDouble(hueDegrees);
- local hueRadians = math.rad(hueDegrees);
- local y = colorUtils.yFromLstar(lstar);
- local exactAnswer = HctSolver.findResultByJ(hueRadians, chroma, y);
- if exactAnswer ~= 0 then
- return exactAnswer;
- end
- local linrgb = HctSolver.bisectToLimit(y, hueRadians);
- return colorUtils.argbFromLinrgb(linrgb);
- end
- --[[
- Finds an sRGB color with the given hue, chroma, and L*, if possible.
- @param hueDegrees The desired hue, in degrees.
- @param chroma The desired chroma.
- @param lstar The desired L*.
- @return An CAM16 object representing the sRGB color. The color has
- sufficiently close hue, chroma, and L* to the desired values, if possible;
- otherwise, the hue and L* will be sufficiently close, and chroma will be
- maximized.
- ]]
- function HctSolver.solveToCam(hueDegrees, chroma, lstar)
- return Cam16.fromInt(HctSolver.solveToInt(hueDegrees, chroma, lstar));
- end
- return HctSolver;